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Genuine electromagnetic wave chaos
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The existence of genuine electromagnetic wave chaos is predicted. The prediction is based on a
general nonlinear mechanism that destroys the superposition principle in case the electromagnetic
field is allowed to interact dynamically with its boundary. Strong support for this prediction is
derived from various model calculations. The proposed chaos mechanism, illustrated here explicitly
for the classical Maxwell field, is of general importance for all fields that are allowed to interact

dynamically with their boundaries.

PACS number(s): 05.45.+b, 03.50.De, 41.20.Bt

The main point of this paper is to argue that, despite
the fact that Maxwell’s equations [1] are linear, determin-
istic chaos [2—4] can occur in the electromagnetic field
of a cavity with a movable piston. How is this possi-
ble? Is not chaos usually associated with nonlinear sys-
tems? The answer is the following. It is true that the
Maxwell equations are linear if the electromagnetic field
is contained within a cavity with fixed ideally conduct-
ing walls. In this case the superposition principle holds
and no chaos can emerge. But an electromagnetic field
contained inside a cavity exerts a pressure on the cavity
walls. Suppose that one of the cavity walls is movable (for
instance, the wall at z = ¢ in Fig. 1), and the electromag-
netic field is allowed to act on this wall and modify its
position in a dynamical way, then the superposition prin-
ciple is no longer valid and Maxwell’s equations inside
the cavity are effectively nonlinear. In this case, the elec-
tromagnetic field can become truly chaotic in the usual
dynamical systems sense [4] showing complex behavior
and exponential sensitivity to the initial electromagnetic
field configuration. Before launching into a quantitative
analysis of the system shown in Fig. 1, we should, at this
point, remain some more on the qualitative level and dis-
cuss the physical reason why the superposition principle
can be violated in as simple a situation as sketched in
Fig. 1.

Figure 1 shows a rectangular ideally conducting cav-
ity with side length a in the z direction, side length b in
the y direction, and side length ¢ in the z direction. If
g(t) = 0 for all time, we have a rigid cavity discussed in
standard textbooks on electromagnetic theory (see, e.g.,
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FIG. 1. Sketch of the dynamic cavity.
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[1]). This type of cavity does not present any surprises.
Its modes can be classified into transverse magnetic (TM)
and transverse electric (TE) modes [1], where the z com-
ponent of the magnetic field, or the z component of the
electric field, are identically zero, respectively. But qual-
itatively new features of an electromagnetic field in a
cavity emerge if one of the walls, e.g., the one located
at z = ¢, as shown in Fig. 1, is allowed to act like a
piston, i.e., it is allowed to slide frictionlessly in the z
direction. A spring attached to the piston provides a
restoring force. The system shown in Fig. 1, including
the electromagnetic field, is closed and autonomous, i.e.,
the total energy of the system is conserved. In this case
any chaos emerging in the system must be self-generated
dynamically.

Suppose now that we start the system at some g(t =
0) = go, ¢(t = 0) = ¢o, and with some initial field config-
uration inside the cavity denoted by E(m,y,z;t =0) =
Eo($,y,z), E(x,y,z;t =0) = go(m,y,z). The electro-
magnetic field will exert a pressure on the piston wall.
Therefore the piston is subjected not only to the force
exerted by the spring, but also to the force produced by
the electromagnetic field configuration inside the cavity.
As a consequence of the interaction between the electro-
magnetic field inside the cavity and the dynamics of the
piston, we will see a motion of the piston, denoted by
q(t), and a corresponding evolution of the electromag-
netic field, denoted by E(z,y,z;t), é(z,y,z;t). Now,
if we start with the same initial position of the piston
g(t = 0) = go and ¢(t = 0) = o, but with a different
initial field configuration E(m,y,z;t =0) = Eé(m,y,z),
é(w,y,z;t =0) = Eé(w,y, z), then the initial pressure
on the piston will in general be different than in the
first case, resulting in a different piston response function
¢'(t) # q(t). The superposition principle states that, if
E(t), B(t) is a solution of the problem, and E’(t), B'(t) is
also a solution of the problem, then the sum E(t)+ E'(t),
B(t)+ B'(t) is also a solution of the problem. This is ob-
viously not the case here, since the components of the
sum field [E(t), B(t) and E'(t), B'(t), respectively] sat-
isfy different boundary conditions [dictated by g(¢) and
¢'(t), respectively]. Consequently, the sum field does
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not satisfy any of these conditions and is therefore not
a solution. In fact, an electromagnetic field started out
with the initial field configuration Eo(z,y, z)+E)(z, v, 2),
Bo(z, v, z) + B}(x,y,z), negotiating its boundary and
time evolution dynamically with the piston, will produce
yet a different piston position ¢”(t), and therefore a dy-
namical boundary condition not satisfied by either of the
two components of the “sum field.” Thus, in the case
of a dynamical cavity, the superposition principle is vi-
olated. This is the central point, and the origin of the
possibility of electromagnetic wave chaos in the system
shown in Fig. 1. Tiny changes in the initial field configu-
ration in the cavity can give rise to a completely different
time evolution of the piston position ¢(t). Therefore, un-
like the situation in a linear system, initial errors do not
translate linearly into errors in the final states of the field
configurations, but may indeed be exponentially ampli-
fied. This prediction is substantiated below with the help
of model calculations.

The electromagnetic field in the cavity shown in Fig.
1 satisfies the Maxwell equations [1]

divE = 0, divB = 0,
rotB = Cizaﬁ/at, rotE = —8B/ot. (1)

The Maxwell equations (1) have to be solved subject to
the boundary conditions [1,5]
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where 7i is the unit normal on the boundary and ¥ is the
speed of the boundary. At the five stationary walls of the
cavity the boundary condition C; reduces to the static
condition

C,: AaxE=0. (3)

The solution of (1) subject to C; and C; is a formidable
problem even for the simple setup shown in Fig. 1. The
problem is simplified substantially if we replace C5 by C,
even at the moving boundary of the cavity. In this case
the set of Egs. (1) can be solved with the help of a mode
expansion in an adiabatic basis. The change in bound-
ary conditions is not expected to affect the central thesis
of this paper: the existence of genuine electromagnetic
wave chaos. Moreover, the mode expansion provides us
with considerable insight into the workings of the chaos
' mechanism discussed above.

In this paper we restrict ourselves to the discussion of
TM cavity modes only. Following [1] we split the electric
and magnetic fields in the cavity into components paral-
lel (E., B,) and transverse (E_'t, Et) to the z direction.
Taking the mobility of the piston into account, we obtain
the following expressions for the TM modes:
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The integers m,n = 1,2,...,p = 0,1,... characterize the
particular TM mode, Ej is a constant electric field am-
plitude, €, is a unit vector in the z direction, AI(,m") @)
is a time dependent amplitude function, c is the speed
of light, and V, is the “transverse gradient” given by
V. = (8/8x,8/dy). The scalar functions ¥p,, are func-
tions of z and y only. They are defined by ¥, (z,y) =
sin(mnz/a) sin(nwy/b) and satisfy [V2 + 42, ] ¥mn = 0,
where v2,,, = (mm/a)? + (nw/b)%. It can be checked that
the modes (4) satisfy the boundary conditions C; and C,.
The modes (4) are constructed such that the first three
Maxwell equations in (1) and the z component of the
fourth Maxwell equation are identically satisfied. The
transverse component of the rotE equation in (1) is sat-
isfied only for ¢(t) = 0. In this case the piston is fixed at
z = q, and (4) represents a collection of stationary TM
cavity modes. For ¢ # 0 the motion of the piston couples
the TM modes (4). Two cases have to be distinguished.
(i) At time ¢ = 0 only modes with fixed (m,n) are oc-
cupied, whereas the fields and their time derivatives are
zero in the modes (m’,n') for m # m' and n # n'. In this
case the fields in the modes different from (m,n) remain
exactly zero for all times. This is the “diagonal” case.
Its existence is due to the fact that the piston moves ex-
clusively in the z direction. (ii) If at time ¢t = 0 two
classes of modes, (m1,n1) and (mz,nz), with my; # my
and n; # ng are occupied, they will be coupled through
the moving boundary at z = ¢(t). If at time t = 0 the
total energy in the class of modes (mz,nz) is close to
zero, the energy content in this class can nevertheless be
“pumped up” in the course of time due to the motion of
the piston driven by the modes in class (m1,n;). We call
this phenomenon “mechanical mode pumping.” In this
paper we restrict ourselves to the diagonal case (i) and
assume that only modes with fixed (m,n) are occupied
initially. We expand the electric and magnetic fields in
the cavity according to

Frm (2,y,2;) = Y F PN (z,y,2;8),  (5)
P

where F stands for any of the components of the electric
or the magnetic fields in the cavity. A set of coupled dif-
ferential equations for the expansion amplitudes Aé,m") ®)
in (4) can be derived from the transverse component of
the rotE equation in (1). Measuring time in units of
1/(¢Ymn) and length in units of 1/+,,,, suppressing the
indices m,n, and using the orthogonality of the functions
Ymn, We obtain
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We introduced the coupling matrix elements I',,
= (rn/q®) []cos(rmz/q)zsin(prz/q)dz and R, =
(rpn?/q3) [J cos(rmz/q)2* cos(prz/q)dz. Measuring en-
ergies in units of E2abeo/(167mn), where € is the electric

permittivity of the vacuum, the energy of the electromag-
netic field can be expressed as

£=q {421+ (n/o)? + 42}
+zg 2}; (2404(0/rIT0p + Arihey} 45, (1)

where A, = (rpn?/q®) [[sin(rrz/q)2?sin(prz/q)dz.
Since the total energy is conserved, the field energy acts
like a potential energy for the piston. Therefore the equa-
tion of motion for the piston reads

dP o0&
= —k(g—d) — —
- (-9 - 5 ®)

where P is the momentum of the piston, k& is the dimen-
sionless spring constant, and ¢ is the equilibrium position
of the piston in the zero-field case. For all the examples
discussed in this paper we use § = 1. The last term in
(8) has to be evaluated according to (1/¢)d€/dt in or-
der to take the motion of the boundary properly into
account. In order to illustrate the emergence of chaos in
the electromagnetic field of the dynamic cavity shown in
Fig. 1, we will now study a nonrelativistic single-mode
model defined by retaining only the TM mode withp =1
and using the momentum-velocity relation P = ug. We
choose 4 = 1 and & = 10. This model describes the
field with two amplitudes A = A; and A = A; which
act like position and momentum variables. Therefore the
phase space of the single-mode model is four dimensional.
Since the energy is conserved, the phase-space flow is
on a three-dimensional subspace of the four-dimensional
phase space. We can visualize the nature of the flow by
recording the values of the field variables A and A when-
ever the piston position g passes through ¢ with ¢ > 0.
This way we produce a Poincaré surface of section de-
fined by ¢ = §. Figure 2(a) shows the resulting phase-
space portrait for £ = 4. Because of energy conservation
A can only be in the range — A0 < A < Ajnaz, where
Amaz = VE/v/1+ 7% = 0.606.... The Poincaré section
shown in Fig. 2(a) was generated from a single initial con-
dition with A9 = 0.3, Ao = 0, and go = 1. The initial pis-
ton velocity go was chosen such that E = 4. The coupled
equations of motion (6) and (8) were solved with a fourth-
order Runge Kutta method [6]. The phase-space portrait
in Fig. 2(a) looks chaotic. This result proves that genuine
chaos can arise in a linear field theory with a dynamic
boundary. But if the field is truly chaotic, we should see
exponential sensitivity of the field amplitudes with re-
spect to tiny variations in the initial field configuration.
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FIG. 2. Poincaré sections for the single-mode model. (a)
Nonrelativistic, E = 4, k = 10, (b) relativistic, E = 4, k = 10,
and (c) relativistic, £ = 20, k = 50.

In order to demonstrate exponential sensitivity in the
field, a reference trajectory A(t), A(t),q(t), 4(t) and a tra-
jectory A(t), A(t),d(t),§(t) were integrated over a time
interval of 0 <t < 100. The reference trajectory is iden-
tical with the trajectory whose Poincaré section is shown
in Fig. 2(a). The “tilde” trajectory was started close
to the reference trajectory with initial conditions 4o =
0.34+10°7, Ag =0, §o = 1, and §, such that E = 4. The
values of the field amplitudes 4 and A (fi and A, respec-
tively) were computed at 1000 equidistant mesh points
tr, = k/10, k = 1,...,,1000, and the corresponding Eu-
clidean distance d(t) = {[A(t)— A(t)]>+[A(t) — A(t)]?}/?
was computed at the 1000 values t;. The result is shown
in Fig. 3(a). There clearly is an initial exponential rise of
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FIG. 3. Euclidean distance d(t) of two initially close trajec-
tories of the single-mode model. (a) Nonrelativistic, E = 4,
k = 10, and (b) relativistic, E = 20, k = 50.

the distance proving exponential sensitivity upon initial
conditions. At t = 25 the distance saturates at a value
that corresponds approximately to the diameter of the
dynamically accessible region in the A-A phase space.
Inspection of the velocities reveals that ¢ is on the order
of c. This observation has two consequences. First, the
piston motion has to be treated relativistically; second,
C, has to be replaced with C; if a realistic computation
of the cavity fields is desired. As discussed above, the
implementation of C, is not possible at present. But it
is straightforward to treat the piston motion relativis-
tically. Using P = ug/+/1—¢? in (8), we obtain the
Poincaré section shown in Fig. 2(b) for energy E = 4.
The chaos shown in Fig. 2(a) has disappeared. We call
this effect relativistic suppression of chaos. Chaos reap-

pears at higher energies. Figure 2(c) shows a Poincaré
section for the relativistic model at £ = 20 and k = 50.
In this case the phase space is mixed with chaotic and reg-
ular regions. Figure 3(b), whose reference trajectory was
started in the chaotic regime of Fig. 2(c) with A = —0.2,
A=0 proves that exponential sensitivity persists in the
relativistic case.

Chaos and exponential sensitivity also persist if more
modes are taken into account. This was checked explic-
itly in two cases by keeping 5 and 30 modes in the ex-
pansion (4). This means that the chaos observed in the
single-mode case is not an artifact of the single-mode
model, but indicative of the general behavior of electro-
magnetic fields in a dynamic cavity. It was also found
that the energy content of higher modes rapidly decreases
with increasing p. Therefore, the piston model exhibits
temporal chaos, but no electromagnetic turbulence since
the rapid convergence of the mode expansion indicates
that the space degrees of freedom are not chaotic.

In this paper we provided evidence for the existence
of genuine electromagnetic wave chaos. The chaos pre-
diction is based on a mechanism that destroys the su-
perposition principle in case the electromagnetic field is
allowed to interact dynamically with its boundary. The
results of various model calculations support the theoret-
ical prediction. In order to make the calculations more
realistic and eventually prove the existence of genuine
electromagnetic wave chaos one has to pursue two direc-
tions. (a) The proper boundary condition C, has to be
implemented in the computations, and (b) off-diagonal
modes (m/,n’) have to be included in the calculations.
Although the diagonal case, i.e., the inclusion of (m,n)
modes only, with m and n fixed, is formally exact, the
initial presence of the off-diagonal modes cannot be ex-
cluded in practice. At finite temperature, e.g., all the
modes are at least thermally occupied. Therefore, before
investigating point (a), it seems more important to in-
vestigate (b) and the phenomenon of mechanical mode
pumping.

The chaos mechanism employed in this paper is not re-
stricted to electromagnetic fields. It can be applied gen-
erally in any situation where a field is allowed to modify
its boundary self-consistently. In all these cases chaos is
expected to emerge in certain regimes of system control
parameters, irrespective of whether the field is governed
by linear or nonlinear field equations. As demonstrated
above for some special cases, the signature of chaos in a
wave system is sensitive dependence on initial field con-
figurations.
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